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Abstract
For any spin–orbit coupling term κ , the analytical solutions of the Dirac
equation for the Eckart potential are presented by using the asymptotic iteration
method within the framework of the spin and pseudospin symmetry concept.
The energy eigenvalues are obtained in the closed form by applying an
approximation to the spin–orbit coupling potential.

PACS numbers: 03.65.Fd, 03.65.Ge, 34.20.Cf, 34.20.Gj

1. Introduction

Recently, there has been a renewed interest in solving the Dirac equation analytically to
describe the relativistic spin-1/2 particles. It is well known that the analytical solution of
the Dirac equation for κ �= 0 can be possible for only few potentials such as the Coulomb
[1–3] and the harmonic oscillators [3, 4]. For the case κ = 0, the analytical solutions can
be obtained for a number of potentials. Alhaidari [5] has investigated relativistic extensions
of shape-invariant potential classes: Rosen–Morse, Eckart, Pöschl Teller, Scarf as well as the
Morse [6] and Hulthén [7] potentials for κ = 0. Recently, Zou [8] has analysed the s-wave
Dirac equation for the equal Eckart scalar and vector potentials by using the supersymmetric
quantum mechanics approach and the functional analysis method. Using the same methods, Jia
[9] has dealt with the s-wave Dirac equation for the Eckart potential with spin and pseudospin
symmetry. The spin and pseudospin symmetric solutions of the Dirac equation are very
important to describe the nuclear shell structure [10, 11] and these have been observed in
several nuclei for a few potentials such as the harmonic oscillator [12–16], the Morse [17, 18]
and the Wood–Saxon potentials [19, 20].

In this paper, our aim is to solve the Dirac equation with the Eckart potential for any κ-state
by using a different and more practical method, called the asymptotic iteration method (AIM)
[21] within an approximation to spin–orbit coupling potential in order to obtain the relativistic
bound state eigenvalues and the corresponding Dirac spinors by spin symmetry and pseudospin
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symmetry concept. In the next section, we present AIM with all necessary formulae to perform
our calculations. In section 3, a brief introduction of the usual Dirac formalism is presented. In
section 3.1, we present the spin symmetric solution of the Dirac–Eckart problem by using AIM
for any κ-state and in section 3.2, we also investigate the relativistic bound state eigenvalues
and the corresponding spinors of Dirac particles for κ �= 0 by using AIM with the pseudospin
symmetric case. Finally, section 4 is devoted to the summary and conclusion.

2. The asymptotic iteration method

AIM is proposed [21, 22] and applied [23–26] to solve second-order differential equations of
the form

y ′′
n(x) = λ0(x)y ′

n(x) + s0(x)yn(x), (1)

where λ0(x) �= 0 and the prime denote the derivative with respect to x, the extra parameter
n is thought as a radial quantum number (see section 3). The variables, s0(x) and λ0(x)

are sufficiently differentiable. To find a general solution to this equation, we differentiate
equation (1) with respect to x, we find

y ′′′
n (x) = λ1(x)y ′

n(x) + s1(x)yn(x), (2)

where

λ1(x) = λ′
0(x) + s0(x) + λ2

0(x), s1(x) = s ′
0(x) + s0(x)λ0(x). (3)

Equation (1) can be easily iterated up to (k + 1)th and (k + 2)th derivatives, k = 1, 2, 3, . . . .

Therefore, we have

y(k+1)
n (x) = λk−1(x)y ′

n(x) + sk−1(x)yn(x),

y(k+2)
n (x) = λk(x)y ′

n(x) + sk(x)yn(x),
(4)

where
λk(x) = λ′

k−1(x) + sk−1(x) + λ0(x)λk−1(x),

sk(x) = s ′
k−1(x) + s0(x)λk−1(x),

(5)

which are called the recurrence relations. From the ratio of the (k + 2)th and (k + 1)th
derivatives, we have

d

dx
ln

[
y(k+1)

n (x)
] = y(k+2)

n (x)

y
(k+1)
n (x)

=
λk(x)

[
y ′

n(x) + sk(x)

λk(x)
yn(x)

]
λk−1(x)

[
y ′

n(x) + sk−1(x)

λk−1(x)
yn(x)

] . (6)

For sufficiently large k, if
sk(x)

λk(x)
= sk−1(x)

λk−1(x)
= α(x), (7)

which is the ‘asymptotic’ aspect of the method, then, equation (6) is reduced to
d

dx
ln

[
y(k+1)

n (x)
] = λk(x)

λk−1(x)
, (8)

which yields

y(k+1)
n (x) = C1 exp

(∫ x λk(x1)

λk−1(x1)
dx1

)
= C1λk−1(x) exp

(∫ x

[α(x1) + λ0(x1)] dx1

)
, (9)

where C1 is the integration constant and the right hand side of equation (9) is obtained by using
equations (7) and (8). By inserting equation (9) into equation (4), the first-order differential
equation is obtained as

y ′
n(x) + α(x)yn(x) = C1 exp

(∫ x

[α(x1) + λ0(x1)] dx1

)
. (10)
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This first order differential equation can easily be solved and the general solution of
equation (1) can be obtained as

yn(x) = exp

(
−

∫ x

α(x1) dx1

) [
C2 + C1

∫ x

exp

(∫ x1

[λ0(x2) + 2α(x2)] dx2

)
dx1

]
. (11)

For a given potential, the radial Schrödinger equation is converted to the form of equation (1).
Then, s0(x) and λ0(x) are determined and sk(x) and λk(x) parameters are calculated by the
recurrence relations given by equation (5).

The termination condition of the method in equation (7) can be arranged as

δk(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0 k = 1, 2, 3, . . . (12)

where k shows the iteration number. For the exactly solvable potential cases, using
equation (12) the roots ε of δk(x, ε) are independent of x, and the vanishing of δk gives
us the exact analytical eigenvalues as in equation (32) and the radial quantum number n is
equal to the iteration number k [21–23]. For nontrivial potential cases that have no exact
solutions, δk(x, ε) depends on both x and ε. Then, equation δk(x, ε) = 0 is solved for a
suitable chosen point x = x0, the choice of which affects the convergence rate of the iteration.
A suitable choice of x gives the eigenvalue for small iteration numbers. If it is not chosen well,
then the energy eigenvalues may be obtained at large iteration numbers k. A suitable point x0

may be determined generally as the maximum value of the asymptotic wavefunction or the
minimum value of the potential [24–26] and the approximate energy eigenvalues are obtained
from the roots of equation (12) for sufficiently great values of k with iteration, for which k is
always greater than n in these numerical solutions.

The general solution of equation (1) is given by equation (11). The first part of
equation (11) gives us the solutions that are convergent and physical, whereas the second part
of equation (11) gives us non-physical solutions that are divergent. Although equation (11) is
the general solution of equation (1), we take the coefficient of the second part (C1) as zero, in
order to find the square integrable solutions. Therefore, the corresponding eigenfunctions can
be derived from the following wavefunction generator for exactly solvable potentials:

yn(x) = C2 exp

(
−

∫ x sn(x1)

λn(x1)
dx1

)
, (13)

where n represents the radial quantum number.

3. Analytical solution of the Eckart potential

The Dirac wave equation [1, 16, 19, 20, 27] for a single particle with mass M in a scalar
potential S(�r) and a vector potential V (�r) can be given as (in units h̄ = c = 1)

[�α · �p + β(M + S(�r)) + V (�r)]ψ(�r) = Eψ(�r), (14)

where �p and E are the momentum operator and the total relativistic energy of the system,
respectively. The total angular momentum operator Ĵ and spin–orbit matrix operator
K̂ = −β(σ̂ · L̂ + 1) commute with the Dirac Hamiltonian for only spherically symmetric
potentials. �α and β are 4 × 4 Dirac matrices i.e,

�p = −i �∇, �α =
(

0 �σi

�σi 0

)
, and β =

(
I 0
0 −I

)
, (15)

where I is the 2 × 2 unit matrix and �σi=x,y,z are 2 × 2 Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (16)
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The Dirac spinors may be written according to upper (large) fnκ and lower (small) gnκ as,

ψnκ(�r) =
(

fnκ

gnκ

)
=

(
Fnκ (r)

r
Y 	

jm(θ, φ)

iGnκ (r)

r
Y 	̃

jm(θ, φ)

)
, (17)

where Y 	
jm(θ, φ) and Y 	̃

jm(θ, φ) are the spin and pseudospin spherical harmonics. n is the
radial quantum number and m is the projection of the angular momentum on the z axis. The
orbital angular momentum quantum numbers l and l̃ refer to the spin and pseudospin quantum
numbers, respectively. For a given spin–orbit coupling term κ = ±1,±2, . . . , the total
angular momentum, the orbital angular momentum and pseudoorbital angular momentum are
given by j = |κ|−1/2, l = |κ +1/2|−1/2 and l̃ = |κ −1/2|−1/2, respectively. Substituting
equation (17) to equation (14), we can immediately obtain two coupled ordinary differential
equations for the radial parts of the Dirac eigenfunctions, namely(

d

dr
+

κ

r

)
Fnκ(r) = [M + Enκ − V (r) + S(r)] Gnκ(r), (18)

and (
d

dr
− κ

r

)
Gnκ(r) = [M − Enκ + V (r) + S(r)] Fnκ(r). (19)

By eliminating Gnκ(r) in equation (18) and Fnκ(r) in equation (19), we immediately obtain
the second-order differential equation for the lower and upper components of the Dirac
wavefunction. These are[

d2

dr2
− κ(κ − 1)

r2
− (M + Enκ − �(r))(M − Enκ + �(r))−

d�
dr

(
d
dr

− κ
r

)
M − Enκ + �(r)

]
Gnκ(r) = 0

(20)

and[
d2

dr2
− κ(κ + 1)

r2
− (M + Enκ − �(r))(M − Enκ + �(r)) +

d

dr

(
d
dr

+ κ
r

)
M + Enκ − �(r)

]
Fnκ(r) = 0,

(21)

where �(r) = V (r) + S(r) and �(r) = V (r) − S(r).

3.1. Spin symmetric solution of the Eckart potential for any κ state

In the case of exact spin symmetry
( d
(r)

dr
= 0, i.e. 
(r) = C = const

)
, equation (21) becomes[

d2

dr2
− κ(κ + 1)

r2
− (M + Enκ − C)(M − Enκ + �(r))

]
Fnκ(r) = 0, (22)

where κ = 	 for κ < 0 and κ = −(	 + 1) for κ > 0. The energy eigenvalues depend on n and
	, i.e., Enκ = E(n, 	(	 + 1)), which is well known as the exact spin symmetry [19, 28]. We
assume that �(r) is the Eckart potential [29], which is defined as

V (r) = V1 cosech2(αr) − V2 coth(αr), (23)

where α is the screening parameter, determining the range for the Eckart potential. The Eckart
potential can be written in the exponential form:

V (r) = 4V1
e−2αr

(1 − e−2αr )2
− V2

1 + e−2αr

1 − e−2αr
. (24)
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On the other hand, instead of the spin–orbit coupling potential Vκ(r) = κ(κ+1)

r2 , we take an
approximate spin–orbit coupling one as

Ṽκ (r) = 4α2κ(κ + 1)
e−2αr

(1 − e−2αr )2
(25)

similar to [30–35] in the limit of small α and κ .
By inserting the Eckart potential and the approximate spin–orbit coupling one into

equation (22) and using the following ansätze in order to make the differential equation
more compact

s = e−2αr , ε = M2 − E2
nκ − C(M − Enκ)

4α2
, β = −V2(M + Enκ − C)

4α2
,

γ (γ − 1) = κ(κ + 1) +
V1

α2
(M + Enκ − C).

(26)

The Dirac equation can then be reduced to

d2F̃nκ(s)

ds2
+

1

s

dF̃nκ(s)

ds
+

[
− ε

s2
− γ (γ − 1)

s(1 − s)2
− β(1 + s)

s2(1 − s)

]
F̃nκ(s) = 0 (27)

The wavefunction should respect the boundary conditions, i.e. F̃nκ(0) = 0 at s = 0 for
r −→ ∞ and F̃nκ(1) = 0 at s = 1 for r −→ 0. Therefore the reasonable physical wave
function we propose is

F̃nκ(s) = s
√

ε+β(1 − s)γ fnκ(s). (28)

If we insert this wavefunction into equation (27), we have the second-order homogeneous
linear differential equation in the form

d2fnκ(s)

ds2
=

[
(1 + 2γ + 2

√
ε + β)s − (2

√
ε + β + 1)

s(1 − s)

]
× dfnκ(s)

ds
+

[
2
√

ε + βγ + γ 2 + 2β

s(1 − s)

]
fnκ(s), (29)

which is now amenable to an AIM solution. By comparing this equation with equation (1),
we can write the λ0(s) and s0(s) values and by means of equation (5), we may calculate λk(s)

and sk(s). This gives

λ0(s) = (1 + 2γ + 2
√

ε + β)s − (2
√

ε + β + 1)

s(1 − s)

s0(s) = 2
√

ε + βγ + γ 2 + 2β

s(1 − s)

λ1(s) = (6
√

ε + β + 2 + 6
√

ε + βγ + 3γ 2 + 6γ + 4ε + 2β)s2 + 2 + 6
√

ε + β + 4ε + 4β

s2(−1 + s)2

+
(−12

√
ε + β−4γ +γ 2−6

√
ε + βγ − 6β + −8ε − 4)s

s2(−1 + s)2

s1(s) = (γ 2 + 2β + 2
√

ε + βγ )(−2 + 3s + 2γ s + 2
√

ε + βs − 2
√

ε + β)

s2(−1 + s)2

. . . etc. (30)

By inserting above equations into δ1 = s0λ1 − s1λ0 = 0, we obtain the first δ1 value as

δ1 = (2β + 2
√

ε + β + 2
√

ε + βγ + 1 + 2γ + γ 2)(2
√

ε + βγ + 2β + γ 2)

s2(−1 + s)2
. (31)
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The root of equation (31) gives us the first ε0 value as ε0 = 4β2+γ 4

4γ 2 . Similarly, using the
quantization condition given by equation (12) yields other δ and ε values.

δ2 = s1λ2 − s2λ1 = 0 ⇐ ε1 = 4β2 + γ 4 + 6γ 2 + 4γ 3 + 4γ + 1

4(1 + γ )2
,

δ3 = s2λ3 − s3λ2 = 0 ⇐ ε2 = 4β2 + 16 + 32γ + 24γ 2 + 8γ 3 + γ 4

4(2 + γ )2
,

. . . etc.

(32)

When the above expressions are generalized by induction, the eigenvalues turn out to be

εnκ = 4β2 + (n + γ )4

4(n + γ )2
n = 0, 1, 2, 3, . . . (33)

We should also point out that inserting ε0 into equation (31), the term
√

ε + β is equal to√
(2β+γ 2)2

4γ 2 . Therefore, this equation has two roots, i.e., ± (2β+γ 2)

2γ
. The negative root, − (2β+γ 2)

2γ
,

satisfies equation (31). The other root does not satisfy equation (31), which is also valid for
ε1, ε2, . . . , etc.

Using equation (26) and (33), we obtain the energy eigenvalues Enκ as

(M − Enκ)(M + Enκ − C) = α2

[
(n + γ )2 +

4β2

(n + γ )2

]
, (34)

where γ = 1
2 ± 1

2

√
1 + 4κ(κ + 1) + 4V1

α2 (M + Enκ − C). This result is same as the s-state
solution of the Dirac–Eckart problem with spin symmetry in [9]. We should clarify that the
energy eigenvalues of the Eckart potential for any κ-states are exactly solvable, i.e the roots
of equation (12) are independent of the x0 point.

The corresponding eigenfunctions by using the wavefunction generator given by
equation (13) could be obtained as

fnκ(s) = (−1)nC2
�(n + 2

√
εnκ + β + 1)

�(2
√

εnκ + β + 1)
2F1(−n, 2(

√
εnκ + β + γ ) + n, 1 + 2

√
εnκ + β; s),

(35)

where � and 2F1 are the gamma function and the Gauss hypergeometric function, respectively
[36]. Therefore, we can write the total radial wavefunction by using equations (28) and (35)
as

F̃nκ(s) = Ns
√

εnκ +β(1 − s)γ 2F1(−n, 2(
√

εnκ + β + γ ) + n, 1 + 2
√

εnκ + β; s), (36)

where N is normalization constant.

3.2. Pseudospin symmetric solution of the Eckart potential for any κ state

In the case of exact pseudospin symmetry ( d�(r)

dr
= 0, i.e., �(r) = C = const), equation (20)

becomes [
d2

dr2
− κ(κ − 1)

r2
− (M + Enκ − �(r))(M − Enκ + C)

]
Gnκ(r) = 0, (37)

where κ = −	̃ for κ < 0 and κ = 	̃+ 1 for κ > 0 and �(r) is the Eckart potential. The energy
eigenvalues depend on n and 	̃, i.e., Enκ = E(n, 	̃(	̃ + 1)). The eigenstates with j = 	̃ ± 1/2
are degenerate for 	̃ �= 0, which is well known as the exact pseudospin symmetry [28, 19].
The Dirac equation cannot be solved exactly for the Eckart potential for κ �= 0 by using the
standard methods. Therefore, in order to obtain an exact analytical solution, an approximation

6
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has to be made for the κ(κ − 1)/r2 term, similar to the previous section. According to this
approximation, we use 4α2 e−2αr

(1−e−2αr )2 instead of 1
r2 . After inserting equations (23) and (25) into

equation (37) and by using the ansätze

s = e−2αr , ε = M2 − E2
nκ + C(M + Enκ)

4α2
, β = V2(M − Enκ + C)

4α2
,

γ (γ − 1) = κ(κ − 1) − V1

α2
(M − Enκ + C).

(38)

The Dirac equation can be reduced to the following form

d2G̃nκ(s)

ds2
+

1

s

dG̃nκ(s)

ds
+

[
− ε

s2
− γ (γ − 1)

s(1 − s)2
− β(1 + s)

s2(1 − s)

]
G̃nκ(s) = 0. (39)

The reasonable physical wavefunction we propose is

G̃nκ(s) = s
√

ε+β(1 − s)γ fnκ(s). (40)

Similar to the previous section, we can immediately obtain the energy eigenvalues

(M + Enκ)(M − Enκ + C) = α2

[
(n + γ )2 +

4β2

(n + γ )2

]
. (41)

where γ = 1
2 ± 1

2

√
1 + 4κ(κ − 1) − 4V1

α2 (M + En − C). This result is same as the s-state
solution of the Dirac–Eckart problem with pseudospin symmetry in [9].

Now, as indicated in section 2, we can determine the corresponding wavefunctions by
using equation (13).

fnκ(s) = (−1)nC2
�(n + 2

√
εnκ + β + 1)

�(2
√

εnκ + β + 1)
2F1(−n, 2(

√
εnκ + β + γ ) + n, 1 + 2

√
εnκ + β; s).

(42)

Thus, we can write the total radial wavefunction as

G̃nκ(s) = Ns
√

εnκ +β(1 − s)γ 2F1(−n, 2(
√

εnκ + β + γ ) + n, 1 + 2
√

εnκ + β; s), (43)

where N is the normalization constant.

4. Conclusion

In this study, we have performed the bound state solution of the Dirac equation for the
Eckart potential within the framework of the asymptotic iteration method by applying an
approximation to the centrifugal-like term. The spin–orbit coupling potential Vκ(r) is close
to the approximated potential Ṽκ (r) for the small α and κ values. Using this approximated
potential, we have obtained the energy eigenvalues and Dirac spinors in the closed form for the
case of the spin symmetry and exact pseudospin symmetry in a systematic way for arbitrary κ

state.
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